Alkaline Pretreatment of Coastal Bermudagrass for Bioethanol Production

نویسندگان

  • Ziyu Wang
  • Deepak R. Keshwani
  • Arthur P. Redding
  • Jay J. Cheng
چکیده

The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the official position of the American Society of Agricultural and Biological Engineers (ASABE), and its printing and distribution does not constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review process by ASABE editorial committees; therefore, they are not to be presented as refereed publications. Citation of this work should state that it is from an ASABE meeting paper. Abstract. Lignocellulosic materials are regarded as an alternative energy source for bioethanol production to reduce our reliance on fossil fuels. Pretreatment is important for improving the enzymatic digestibility of lignocelluloses to increase the yield of fermentable sugars. Alkaline (sodium hydroxide and lime (calcium hydroxide)) pretreatment of coastal bermudagrass for enhanced reducing sugars recovery was investigated in this study. The effect of NaOH pretreatment at 121°C using 1%, 2% and 3% (w/v) NaOH for 15, 30, 60 and 90 minutes was evaluated first. Lower NaOH concentrations (0.5% and 0.75%) and lower temperatures (50, 80 and 100°C) were then examined. Lime (0.1 g Ca(OH) 2 /g raw biomass) pretreatment of the biomass was conducted at room temperature, 50°C, 80°C, and 121°C. Total reducing sugars, glucose and xylose were analyzed. The optimal NaOH pretreatment conditions at 121°C for glucose and xylose production are 15 minutes and 0.75% NaOH. However, to maximize total reducing sugars production, pretreatment at 121°C for 30 minutes using 1% NaOH is needed. The highest reducing sugars yield reached up to approximate 86% of theoretical maximum for NaOH pretreatment. Sodium hydroxide is more efficient than lime at 121°C for improved reducing sugars yield. Increasing temperature reduced the optimal pretreatment time at the same lime loading. The reducing sugars production under optimal pretreatment times was enhanced by 8% of theoretical maximum from room temperature to 80°C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production.

Switchgrass and coastal bermudagrass are promising lignocellulosic feedstocks for bioethanol production. However, pretreatment of lignocelluloses is required to improve production of fermentable sugars from enzymatic hydrolysis. Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass was investigated in this study. Pretreatments were carried out by immersing the biomass in d...

متن کامل

Process Simulation of Dilute Acid Pretreatment of Coastal Bermudagrass for Bioethanol Production

Coastal bermudagrass is a promising lignocellulosic feedstock for bioethanol production. It is well suited for the Southeastern United States where it is currently grown for hay production and nutrient management in animal farming operations. Prior experiments have generated sugar and sugar degradation data from the dilute acid pretreatment and enzymatic hydrolysis of bermudagrass over a range ...

متن کامل

High Temperature Dilute Acid Pretreatment of Coastal Bermudagrass

The conversion of lignocellulosic biomass into ethanol is an encouraging technology in the face of concerns over global warming and finite energy resources. In the southeastern United States, coastal bermudagrass shows potential for use as an energy crop for ethanol production. A review of the literature has shown that research has been done on the dilute sulfuric acid pretreatment of costal be...

متن کامل

Comparative Studies on Effect of Pretreatment of Rice Husk for Enzymatic Digestibility and Bioethanol Production

Three common pretreatment processes based on dilute sulfuric acid, dilute sodium hydroxide and heat treatment (autoclaving) followed by enzymatic hydrolysis were evaluated to provide comparative performance data. Among them, the best result was obtained when the pretreatment of rice husk was carried out with 3% of NaOH solution. The pretreatment of rice husk with NaOH substantially increased th...

متن کامل

Surfactant-Aided Phosphoric Acid Pretreatment to Enable Efficient Bioethanol Production from Glycyrrhiza Glabra Residue

Glycyrrhiza glabra residue (GGR) was efficiently subjected to concentrated phosphoric acid (PA) pretreatment with/without surfactant assistance, and promising results were obtained following separate enzymatic hydrolysis and fermentation (SHF) of the biomass. Pretreatment was carried out using 85 % PA either at 50 or 85 °C with 12.5 % solid loading for 30 min. In parallel experiments, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013